好心情说说吧,你身边的情绪管理专家!

好心情说说专题汇总 心情不好怎么办

励志的句子

励志的句子小编从繁多的资料中选择了一篇非常有用的“性能报告”,希望您能够将本文收藏起来。常言道,实践是智慧的来源,为了展现某个阶段工作的内容,我们必须接触报告。报告的目的在于获取上级领导部门的指导和支持。

性能报告 篇1

旋风除尘器利用离心力和电场力的共同作用分离粒子。旋风除尘器内安装电晕极(称旋风除尘器)但不加电压的运行工况称为旋风除尘器的“静态”工况,此时的除尘效率称为旋风除尘器的静态除尘效率。为了研究安装电晕极对旋风除尘器除尘效率的影响,对常规旋风除尘器和旋风除尘器两种情况分别进行了各种入口风速下的除尘效率实验。常规旋风除尘器选用长筒体型,筒体直径为40mm、入口尺寸为270×110mm,排灰口直径为116mm。排气管直径为200mm,排气管插入深度460mm。在常规旋风除尘器内安装电晕极构成旋风除尘器,电晕极由15根直径4mm钢筋构成网状结构并固定在排气管上。实验粉尘为400h目滑石粉,发尘浓度控制在5g/m3左右。

常规旋风除尘器安装电晕极后除尘效率明显提高,除尘效率的变化规律与常规旋风除尘器除尘效率的变化规律相同,即先随着入口风速的增加而增加,至一最佳运行工况后,除尘效率又有所降低。常规旋风除尘器最佳运行工况在入口风速V=17m/s左右,此时,其总除尘效率达到了80%;而安装电晕极以后,旋风除尘器的静态最佳运行工况约在入口风速V=20m/s左右,静态总除尘效率达到约85%,增幅为6.3%左右。这说明仅仅安装电晕极而不加电压,就能使旋风除尘器的除尘效率明显提高电晕极。在旋风除尘器内具有提高效率的作用。

由上述可知,电晕极在旋风除尘器内具有提高效率的作用,通过实验发现,电晕极在旋风除尘器内也具有降低阻力的作用。

旋风除尘器阻力系数ξ2=4.81,常规旋风除尘器的阻力系数ξ1=9.21,即旋风除尘器的阻力系数比常规旋风除尘器的阻力系数降低了约47%。因此,靠电晕极的作用,较好的改善了旋风除尘器的阻力特性,与常规旋风除尘器相比,旋风除尘器是一种低阻力的粒子分离设备,这对于节能具有极为重要的实际意义。

综上所述,在常规旋风除尘器内安装电晕极,具有降低阻力和提高静态除尘效率(称为“降阻增效”)的作用,为什么电晕极会对旋风除尘器的阻力和效率有这么大的影响呢?下面将进行分析。

切向速度的大小和径向速度分布直接影响颗粒分离的效率,同时轴向速度分离影响了粒子在旋风除尘器内有效分离区域的'停留时间,必然对颗粒的除尘效率产生较大的影响。

旋风除尘器流动阻力主要由三部分组成:即进口局部阻力、旋风筒内旋涡流场中的阻力、排气芯管内的流动阻力。

可见,旋风除尘器的阻力和除尘效率与其内部的流场分布密切相关,要分析电晕极降阻增效的原因,就需要知道旋风除尘器内的流场分布。

为了研究电晕极安装前后旋风除尘器内三维速度分布的变化规律,分别对旋风除尘器内不安装电晕极(称常规旋风除尘器)和旋风除尘器内安装电晕极(称旋风除尘器)两种情况在相同的入口流速下进行了流场测试,流场测试仪器为五孔探针,在除尘器锥体部分及其他一些位置,电晕极比较密集,有的地方五孔探针无法插入,测点适当减少。某些断面在半径的二分之一到三分之一处均无法读取数据(4、5孔的压力不能调到平衡),分析认为由于电晕极对于筒体内流场的扰动,这些位置气流较为紊乱,使4、5孔无法保持压力平衡。

安装电晕极后,切向速度的分布变得平缓、峰值降低。内涡旋不再是强制涡流动,文献也得出了类似的结论。另外,内外涡旋交界面半径明显外移,即内外涡旋交界面直径由常规旋风除尘器的0.5de外移为1.2de(de为排气管直径)。在筒体和锥体的上半部,下行流区的切向速度有所增大,上行流区的切向速度明显减小,在除尘器内的整个流动区域,平均切向速度明显降低。

旋风除尘器上、下行流交界面内移,即上行流区变宽。在下行流区,轴向速度的绝对值减小,这说明粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。另外,轴向速度梯度减小,内摩擦阻力降低,有利于旋风除尘器的减阻。

径向速度分布比较紊乱,尤其在电晕极附近,径向速度分布与常规旋风除尘器相比有较大波动。径向速度方向基本都是向心的,其值的大小与常规旋风除尘器相比没有明显的规律,大多数稍微小于原旋风除尘器的相应值,由于切向速度和径向速度对粒子的分离起着相反的作用,前者产生离心力使粒子做向外筒壁的径向运动,后者则使粒子做向心的径向运动从而进入内漩涡。径向速度值的减小可提高除尘效率。

就静压而言,旋风除尘器下行流区的静压值比常规旋风除尘器略低(绝对值增大);在排气管底部附近,上行流区静压值比常规旋风除尘器增加显著(绝对值减小),大大高于常规旋风除尘器,总的结果是径向上压力梯度减小。

安装电晕极后,径向静压梯度的减小,意味着液体无论是作旋转运动还是作轴向流动,各流层间来自外界的法向作用力减小,使得内摩擦阻力降低。这必然引起旋风除尘器的降低。

在旋风除尘器内的特定位置上安装电晕极,在不加电压的“静态”条件下,能使旋风除尘器的除尘效率提高约6%。原因是:电晕极对旋风除尘器内的流场分布产生了较大影响,在下行流区切向速度较常规旋风除尘器流场的切向速度稍微增大,下行流区是旋风除尘器的主要有效分离区域,除尘效率的高低主要是由下行流区的切向速度的大小决定的。因此,电晕极对下行流区的切向速度产生的影响(下行流区的切向速度增大)有利于提高除尘效率。旋风除尘器上、下行流交界面内移,即下行流区变宽,在下行流区,轴向速度的绝对值减小,粉尘粒子在旋风除尘器的有效分离区域内的停留时间增加,这对离心力分离粒子是有利的,能够提高除尘效率。

旋风除尘器内的阻力大大降低,旋风除尘器的阻力系数(ξ2=4.81)比常规旋风除尘器的阻力(ξ1=9.21)降低了约47%。主要原因是:电晕极使旋风除尘器内整个区域的切向速度分布曲线比常规旋风除尘器内的切向速度分布曲线变得平缓,速度的最大值与平均值都有所降低,减少了旋转动能损失,切向速度梯度减小和径向静压梯度的减小,内摩擦阻力降低,引起旋风除尘器阻力的降低。

【摘要】本文根据旋风除尘器内三维速度分布的测试结果,分析了电晕极的安装对旋风除尘器除尘效率和阻力的影响。在特定的位置上安装电晕极能使旋风除尘器内的速度分布更有利于提高离心力的分离作用,通过测试可知,在安装电晕极但不加电压(称“静态”)的条件下,能使旋风除尘器的除尘效率提高约5%~6%,同时,由于安装了电晕极,改善了旋风分离内的速度分布,使旋风除尘器内的阻力大大降低,旋风除尘器的阻力系数(ξ1=4.81)比常规旋风除尘器的阻力系数(ξ2=9.21)降低了47%。

参考文献:

[1]张吉光,叶龙.计算粒子在旋风除尘器内平均停留时间的新方法.青岛建筑工程学院学报,1990,11(3):22-27.

[2]张吉光,李华.旋风分离器流场的实验研究.流体机械,,(9).

[3]亢燕铭,沈恒根.高效旋风器降阻条件下的流场特征.西安建筑科技大学学报,,29(1):18-21

性能报告 篇2

本次测试的.目的是:

进行应用服务器的压力测试,找出应用服务器能够支持的最大客户端数。

测试环境:

操作系统:Microsoft Windows XP professional SP3

处理器:Intel(R) Pentium(R) 4 CPU 1.70GHZ

场景描述一:

设置系统登陆并发用户10个,同时加载所有用户,开始场景,事务响应时间在5S内

场景描述二:

增强脚本,添加事务和集合点,设置系统登陆并发用户20个,同时加载所有用户,开始场景,事务响应时间在15s内

场景描述三:

增强脚本,添加事务和集合点,设置系统登陆用户50个,每1S加载一个用户,开始场景,事务响应时间在15s内

场景描述四:

1用户登陆“重大危险源GIS应急救援辅助支持系统”模块,总共25个用户,同时加载所有用户,实现用户并发操作

2.用户点击“救援基础资料”-“救援物资存放地点”

5.点击“返回主页”,返回到“重大危险源GIS应急救援辅助支持系统”模块

2)同时加载所有用户,全部通过,平均事务响应时间在22S。随着登陆完成,用户数逐渐减少。用户数减少到17时,平均事务响应时间有了明显的变化;在用户数减少到5时,事务响应时间达到最大值。

3)每1S加载一个用户,50个用户,全部通过。平均响应时间在46S。登陆完成后,开始释放用户,用户数为45时,平均事务响应时间有了明显的增长。用户数为2时,平均事务响应时间达到最大值。

4)事务全部通过,平均事务响应时间在19S左右。完成操作后,开始释放用户,用户数为19时,平均事务响应时间有明显增长。用户数为1时,平均事务响应时间达到最大值

性能报告 篇3

深圳大学物理化学实验报告

实验者:赖凯涛、张志诚实验时间:2000/4/3

气温:21.6℃大气压:101.2kpa

实验一恒温水浴的组装及其性能测试

目的要求了解恒温水浴的构造及其构造原理,学会恒温水浴的装配技术;测绘恒温水浴的灵敏度曲线;掌握贝克曼温度计的调节技术和正确使用方法。仪器与试剂5升大烧杯贝克曼温度计精密温度计加热器

水银接触温度计继电器搅拌器调压变压器

实验步骤3.1实验器材,将水银开关、搅拌器等安装固定。按电路图接线并检查。

3.2大烧杯中注入蒸馏水。调节水银开关至30℃左右,随即旋紧锁定螺丝。调调压变压器至220v,开动搅拌器(中速),接通继电器电源和加热电源,此时继电器白灯亮,说明烧杯中的水温尚未达到预设的30℃。一段时间后,白灯熄灭,说明水温已达30℃,继电器自动切断了加热电源。

调节贝克曼温度计,使其在30℃水浴中的读数约为2℃。安装好贝克曼温度计。关闭搅拌器。每1分钟记录一次贝克曼温度计的读数,一共记录12个。开动搅拌器,稳定2分钟后再每1分钟记录一次贝克曼温度计的读数,一共记录12个。将调压变压器调至150v(降低发热器的发热功率),稳定5分钟,后再每2分钟记录一次贝克曼温度计的读数,一共记录10个。实验完毕,将贝克曼温度计放回保护盒中,调调压变压器至0v。关闭各仪器电源并拔去电源插头。拆除各接线。4实验数据及其处理

表1不同状态下恒温水浴的温度变化,℃

220v,不搅拌

4.170

4.130

4.080

4.030

4.010

4.070

4.160

4.155

4.150

4.130

4.115

4.095

4.070

4.055

4.030

4.010

220v,搅拌

4.540

4.620

4.610

4.570

4.510

4.465

4.420

4.370

4.320

4.270

4.220

4.180

4.130

4.090

4.740

4.940

150v,搅拌

4.810

4.680

4.610

4.510

4.410

4.315

4.225

4.130

4.440

4.680

4.580

4.490

4.390

4.320

4.230

4.140

图1不同状态下恒温水浴的灵敏度曲线

讨论5.1影响灵敏度的因素与所采用的工作介质、感温元件、搅拌速度、加热器功率大小、继电器的物理性能等均有关系。如果加热器功率过大或过低,就不易控制水浴的温度,使得其温度在所设定的温度上下波动较大,其灵敏度就低;如果搅拌速度时高时低或一直均过低,则恒温水浴的温度在所设定的温度上下波动幅度就大,所测灵敏度就低。若贝克曼温度计精密度较低,在不同时间记下的温度变化值相差就大,即水浴温度在所设定温度下波动大,其灵敏度也就低;同样地,接触温度计的感温效果较差,在高于所设定的温度时,加热器还不停止加热,使得浴槽温度下降慢,这样在不同的时间内记录水浴温度在所设定的温度上下波动幅度大,所测灵敏度就低。

5.2要提高恒温浴的灵敏度,应使用功率适中的加热器、精密度高的贝克曼温度计接触温度计,及水银温度计所使用搅拌器的搅拌速度要固定在一个较适中的值,同时要根据恒温范围选择适当的工作介质。

性能报告 篇4

固体火箭发动机前端斜切反喷管,其结构简单、作用时间短,气动型面具有尖点,并在超音速区有台阶,喷管内存在一系列激波,并伴有流动分离现象.本文从雷诺平均的非定常Navier-Stokes方程出发,结合采用Boldwin-Lomax代数湍流模型,利用时间相关法及MacCormark两步显格式做数值求解,模拟了斜切反喷管流场. 计算得到的壁面压强分布与风洞吹风实验测得的压强分布相一致.该方法可应用于斜切反喷管的性能预估分析.

作 者:陈林泉 侯晓 CHEN Lin-quan HOU Xiao  作者单位:中国航天工业总公司四院四十一所,西安,710025 刊 名:固体火箭技术  ISTIC EI PKU英文刊名:JOURNAL OF SOLID ROCKET TECHNOLOGY 年,卷(期): 22(3) 分类号:V435+.23 关键词:数值模拟   纳维尔-斯托克斯方程   喷管   流场   固体推进剂火箭发动机  

性能报告 篇5

摘要:简述DTMF信号产生的基本原理,提出使用SPCE061芯片的D/A端口和使用I/O端口模拟D/A产生DTMF信号的两种实现方案,并通过实验和仿真对两种实现方案进行对比分析。实验证明,由于D/A精度较高,采用D/A输出的DTMF信号质量比使用I/O电阻网络的DTMF质量好;但在采样频率足够高的情况下,使用I/O电阻网络仍然可以满足电信标准要求。

关键词:双音多频(DTMF)sin函数计算SPCE061AMATLAB仿真

在全世界范围内,双音多频DTMF(DualToneMultiFrequency)信令逐渐使用在按键式电话机上,因其提供更高的拨号速率,迅速取代了传统转盘式电话机使用的拨号脉冲信号。近年来,DTMF也应用在交互式控制中,如语言菜单、语言邮件、来电显示、电话银行和ATM终端等。在芯片内部没有内置DTMF产生器时,用普通D/A甚至于用4~5个普通I/O口和简单的电阻网络来模拟D/A实现DTMF信号的产生,将扩大DTMF在工程中的应用,具有一定的应用价值。本文主要研究以上两种用软件产品DTMF信号的方案。

DTMF信号由8个频率两两组合而成。这8个频率又分为低频群和高频群两组。低频群的4个频率依次为697Hz、770Hz、852Hz、941Hz;高频群的4个频率依次为1209Hz、1336Hz、1477Hz、1336Hz。在通信领域应用中,DTMF主要用于电话机拨号信号和CID(CallerIdentification,来电显示)信号的传送。在应用于电话机的拨号信号中,按照国家电信标准,其信号持续时间和间隔时间都不小于40ms,而频率偏差不大于±1.5%。

传统的DTMF发生器芯片有Hotel公司的HT9200A/B、Mitel公司的MT8880等。部分MCU也内置了DTMF发生器,其DTMF信号产生原理可简述如下:

将振荡器产生的高频振荡信号分别送至两个计数器,当计数器达到预设的值时,产生一次反转信号输出,形成低频方波。其中计数器寄存器可用软件设置且有自动装载功能。通过这两个计数器可设置输出的两路方波频率。软件编写控制程序时,只须将对应频率的计数值写入控制寄存器便可自动产生所需的频率信号。

从以上两路输出的方波再进行信号正弦化处理和幅度控制,然后将两路信号同时送至信号混合器输出。这样,如果其中一路输出的方波频率接近DTMF低频群中的一个频率,而另一路接近DTMF高频群中的一个频率,从混合器输出的信号便是所需的DTMF信号了。

DTMF软件产生器是基于两个用软件模拟的二阶数字在弦波振荡器,一个用于产生低频,一个用于产生高频。典型的DTMF信号频率范围是697Hz~1633Hz。选取8192Hz作为采样频率,即可满足Nyquist条件。系统中信号合成的函数方程为

Y(n)=a0+a1sin(2・Pi・f0・n/fs)+a2sin(2・Pi・f1・n/fs)(1)

式中:a0为直流分量;f0、f1分别为DTMF中的低频和高频;fs为采样频率,在此定为8192Hz;a1、a2分别为f0、f1的振幅;n为采样点数。

采样频率并不是DTMF的8个频率中各频率的整数倍,若采用查表法得到各采样点处理的D/A输出值,由于查表意味着输出值周期性的出现,则要求采样频率是输出频率的多个周期的整数倍。又由于输出数据表中需要包括多个周期,而且要逼近上述的整数倍,因此输出频率必须是采样频率整数倍的倍数。由此产生以下几个问题:

①多个周期的数据表较大(平均一个频率20字左右);

②数据表中各数值的计算烦杂;

③产生的信号频率存在频偏。

若采用计算sin函数的方法,以上问题都将迎刃而解。只是,如何计算sin函数呢?在传统的电子计算机系统中,处理浮点数比处理整数要复杂且占用CPU较多的时间;而在郑易里片机系统中,一般对程序运行的时间都有要求。因此,本文采用了定点小数近似表示浮点数的方法,再利用线性插值法计算各点处的正弦函数值。

定点小数的表示方法:将需要表示的小数空间乘上一个系数映射到整数所能所示的空间。本文使用16位的单片机SPCE061,其D/A的精度为10位,DAC输出寄存器为16位数据的高10

位;sin函数的值域为[-1,+1],取整数域[0x0000,0x03ff]映射sin函数值中的[0,+1],取补数映射sin函数值中的负值,即可满足DTMF输出精度要求。要求将1映射为0x03ff,因此,当函数值为正时,应乘以0x03ff即1023,经取整后作为计算sin函数子程序的输出;当函数值为负时,只须将对应的正时的函数值取补便可得到。

计算sin函数时,将0~2π映射为整数域的[0x0000,0x4000],因此,可通过整数域的第13和12位获得象限信息。查表时只计算第一象限[0,π/2]的正弦值,其它象限的函数仁政由三角函数公式计算得到。第一象限sin函数的计算:0~π/2被映射到整数域的[0x0000,0x1000],将其分为16等分,将分割点上的函数值建立数据表,即将0、0x0100、0x0200等17个点处对应的正弦值列表,若弧度值x介于两分割点x1与x2之间,则通过查表获得sin(x1)与sin(x2),则有:

sin(x)=sin(x1)+[sin(x2)-sin(x1)](x2-x1)/256

其它象限可根据三角函数公式获得类似的计算公式。

由于在DTMF的传输过程中,高频在线路中的传输损耗比低频高,为了保证信号到达交换机时高、低频信号电平基本相当,在DTMF信号产生器中,标准规定频率组合中高频分量电平应比低频分量电平高2±1dB。在DTMF硬件产生器中,这一处理是在高、低频信号混合器之间的低频通道中加适当的衰减电路完成的;而在用D/A产生DTMF信号的过程中,高、低频信号的混合也是由软件完成的。因此,必须在高、低频信号的产生过程中就考虑使低频信号的振幅略低于高频信号,这样才能从输出的信号中获得所需的电平差。由2.1中所描述的sin函数计算得的函数值,为实际函数值的1023倍。式(1)中,取y(n)的电压范围为0~5V,直流分量a0为2V;令高频信号的电平为Sh,低频信号的电平为S1,单位为dBm,则有

Sh=-20lg(Vh/V0)S1=-20lg(V1/V0)1取Vh/V1=6/5,则Sh-S1≈1.6dB,即取a1为5,a2为6,即可得到高、低频的电平差为1.6dB的信号。将y(n)映射为SPCE061的D/A输出值[0x0000,0xffc0],则DAC的输出为(0xffc0/5)・y(n),公式如下:DAC(n)=(0xffc0/5)・y(n)=12.8(1023・a0+a1A+a2B)=式(2)中的A和B都由计算sin的子程序求得。由于2π在量化为整数时为0x4000,即16384,而fs=8192Hz,实际的sin函数子程序自变量便简化为(2nf0和0x3fff),这对于单片机的处理是相当容易的。由上述公式求得的DAC值,已将计算结果数据移到了高10位,可直接输出到D/A寄存器。在某些应用中,所使用的MCU比较简单,如8051;或者因为对成本控制的要求而不能使用带D/A的MCU,但又需要用这些MCU产生DTMF信号,其替代方案是用多个I/O口和电阻网络来模拟D/A。当然,这样的电路产生的DTMF,其输出精度会比由D/A产生的低,噪声也会比较大,但在某些应用中已经可以满足DTMF输出的要求了。图1是用4个I/O口模拟D/A输出的原理图。图1中的4个I/O口可以表示16种状态。经过列表计算这16种状态下的等价上拉电阻和下拉电阻,可得出各状态下的分压值。以VCC为5V为例,则模拟D/A输出的精度为0.3086V,只相当于一个精度很低的D/A。经过实验测试,用4个I/O口、8192Hz的采样频率输出DTMF信号时,必须用5个I/O口输出才能达到普通电话机拨号器的要求;若采用4个I/O口输出,则要求采样频率大于12kHz。本文介绍的方案中,采用了4个I/O口、16384Hz作为采样频率,利用输出信号与地之间的电容充放电来平滑用I/O口输出的阶梯波形,这样可减小失真,使输出的DTMF信号更接近标准的`正弦波叠加。MATLAB是一种功能相当强大的数字运算、仿真的软件,用其作数字信号处理也是相当简单的事件。下面的实验就是利用SPCE061A芯片通过其D/A和4个I/O口产生DTMF信号,将其耦合输出到声卡的LINEIN输入口,采样获得DTMF信号的数据,再将信号数据转化到MATLAB软件中进行离散FFT分析,获得具频率域的信息。图2是用D/A输出的DTMF信号“1”的波形;图3是用D/A输出的DTMF信号频谱;图4是用4个I/O口模拟产生的DTMF信号“1”的波形;图5是用4个I/O口模拟输出的DTMF信号频谱。图3和图5是用MATLAB软件仿真的结果。从图2~5可看出:所产生的DTMF信号,其频率完全集中的规定的两个频率上。两种方案下产生的DTMF波形,通过MATLAB分析计算得到的能量最大值出现的频率都为1206Hz和次大值频率689Hz,频偏分别为0.25%和1.14%,都在DTMF信号规定的范围之内。频率的偏差是由于信号及离散傅里叶变换的量化误差引起的。图2和图4信号波形的横坐标为时间,约12ms;纵坐标为声卡采样量化电压值,声卡采样精度为16位,采样频率为44.1kHz;图3和图5中的横坐标为频率;纵坐标为离散FFT分析结果(用复数表示的频率域信息)的模。图3中,除了DTMF的两个频率外,其它频率没有出现大的毛刺,波形非常漂亮,信号失真度低。图5中,除DTMF的两个频率外,其它频率有多处出现了毛刺,信号失真度比图3所显示的大。本文论述了用D/A产生DTMF的一般方法及其性能,并提出了用普通I/O模拟D/A产生DTMF的方法。在没有DTMF硬件产生器的单片机应用中,可以根据实际情况选用上述两种软件产生的DMTF的方案。建议选择具有D/A的MCU。用D/A产生DTMF比用I/O口模拟产生双音多频信号有以下几个优点:D/A精度较高(普通D/A都有8位或8位以上),产生的信号失真度小;采样频率要求较低,能满足尼奎斯特条件即可,软件产生信号时用中断定时输出,中断频率也就比较低,从而占用CPU时间较少;用D/A输出DTMF信号,不需要电阻网络,外围电路简单。用D/A输出DTMF信号的缺点是:要求MCU具有D/A输出,在应用中存在局限性;在某些低端的应用中,带D/A的MCU的其它资源也较多,成本相对比较高。用多个I/O口来模拟D/A就没有上述局限性,只需要4个以上的I/O口,1.5MIPS左右的指令执行速度(上述实验中采用的MCU主频为6.144MHz,大部分指令执行时间为3~8个机器周期)。这两个要求是大部分低档、低档成本的MCU(包括部分51系列芯片)都具有的,故由此方案实现的系统更有利于控制成本;而精度的不足、失真度大等问题,可以通过增加I/O口的个数来解决。若没有多余的I/O口,根据实际应用情况,可以考虑将某些I/O口分时复用。当然,产生DTMF的方法还有很多。用软件产生可以用PWM的方式(要求MCU具有较高的执行速度),用硬件产生可以用信号发生器等;但相对于用D/A或者普通I/O口来说,其复杂程度和成本都分比较高。因此,用D/A或者普通I/O产生DMTF信号有更广泛的应用。

转载请保留原文链接:http://www.j458.com/a/5735894.html,并在标注文章来源。
上一篇 : 音乐会感悟与体会(优选)
下一篇 : 部队理论考试不及格的检讨怎么写(分享)
" 性能报告 " 相关阅读