好心情说说吧,你身边的情绪管理专家!

好心情说说专题汇总 心情不好怎么办

励志的句子

随着人们的教育质量的提升,我会运用到各种各样的范文,范文往往会涉及到我们生活的各个方面,什么样的范文比较高质量?下面是小编精心收集整理,为你带来的桥梁方案,仅供你在工作和学习中参考。

桥梁方案(篇1)

桥梁是人们出行、货物运输和流通的重要通道,直接关系到国民经济的发展。在现代化建设中,桥梁的数量以及在交通运输中的地位越来越重要。由于桥梁的特殊性质,其安全受到了极大的关注。桥梁的安全问题一旦出现,不仅会对人民生命财产造成影响,还会导致交通运输中断,造成大量经济损失。因此,如何保证桥梁的安全性,成为一个重要的工作问题。

桥梁应力监测解决方案,就是一种针对桥梁结构体系中的应力状态进行实时检测的方案。这种方案基于数值计算模型,采用多种产品技术,对桥梁结构体系进行数据采集、处理、传输、分析、应用等工作流程,为桥梁的安全性提供支持和保障。

桥梁应力监测解决方案的工作原理是利用传感器对桥梁应力状态进行实时监测,采集不同位置的应力数据。通过数据采集和传输系统,将数据实时传输到数据中心进行数据的处理和分析。在数据中心,通过数值计算模型对数据进行分析和处理,在建立了精确的应力状态模型之后,可以制定针对桥梁安全的监测策略。同时,可以基于应力状态模型进行预测、评估和预警,有效地提高桥梁安全性。

桥梁应力监测解决方案不仅可以对桥梁结构体系内部的应力进行监测,还可以对桥梁的全生命周期进行安全评估和控制。在桥梁的建设、运营、检修和维护各个阶段,都可以利用桥梁应力监测解决方案为桥梁的安全提供保障。

桥梁应力监测解决方案还可以在桥梁日常维护和运营过程中,实现桥梁的健康状态监测。这种方法能够反映结构体系的变形、病害和损伤等情况,从而更好地指导桥梁的维护和修理。

总之,桥梁应力监测解决方案是一种先进的监测方案,可以对桥梁结构体系进行实时监测和健康状态评估,保证桥梁的安全性,提高桥梁运行效率和使用寿命。随着数字技术的发展,桥梁应力监测解决方案可以实现远程数据采集和处理,提高数据应用的自动化程度,为防范桥梁事故提供更加全面、高效的支持。

桥梁方案(篇2)

主桥下部结构采用栈桥和墩位平台方案,施工钻孔桩基础,反循环工艺成孔,北塔承台采用辅以井点和深井降水明挖施工,南塔承台采用整体锁口钢管桩围堰施工,塔柱采用6m液压自爬模浇筑施工,下横梁采用支架法施工,上横梁采用托架法施工,上部采用先梁后缆方案施工,主缆在梁面上采用猫道为操作平台,PPWS工法架设,索鞍利用塔顶吊架分2块吊装就位。主桥钢箱梁采用单向多点同步顶推法架设,现场在项目驻地以北设置钢梁节段组拼制造厂,钢箱梁在工厂加工成板单元,运抵现场加工成标准节段。北共用墩与北主墩间搭建钢箱梁顶推平台,在顶推平台上设置1处2×170t跨桥位移动提升站吊装箱梁节段和安装北锚梁。钢箱梁前端设置钢导梁,顶推过程中设置临时墩进行支撑,临时墩最大跨度82m,最高达55m。顶推由计算机控制自动连续顶推系统实现。南岸锚固段钢梁板单元由运梁车通过栈桥运输,采用支架法高位拼焊方案,由200t履带式起重机安装2个锚固段,其他单元板件控制在14t以内,用塔式起重机安装,在平台上安装组拼胎架和千斤顶微调系统,将锚梁拼焊成整体,整个支架拼焊及顶推、合龙统一纳入监控,进行线形控制。北岸锚固段钢梁在组拼场拼装成大块节段,由运梁车运输至北岸2×170t提升站处,由2×170t提升站将梁段提升至拼装平台上,将锚梁拼装成整体。如图2所示。

顶推设计

1顶推拼装平台

顶推拼装平台是钢箱梁节段拼焊和线形控制的场地,是顶推施工的起点。拼装平台纵向长40m,横向宽44m,采用钢管桩加钢管连接系作为支撑体系,管桩顶采用型钢作为纵、横梁。平台四周采用1.2m(δ=12mm)管桩,中间采用0.8m(δ=10mm)管桩。管桩每根长72m,入土深度约27m,单桩承载力1750~3200kN。

2临时墩及导梁

全桥共有6组临时墩,分布在北共用墩和南共用墩之间的河道和滩地上,标准间距为82m。每组标准临时墩通过分配梁和钢管组成变刚度结构,栈桥以下由24根1.0m管桩(δ=12mm)体系组成,按照3m×4m间距布置,栈桥以上由4根1.5m管桩(δ=16mm)组成。连接系采用桁式钢管,管桩顶采用型钢分配梁上布置滑道结构。单桩竖向承载力3000kN,入土深度35m,设计考虑调水调砂的冲刷12m影响。平台及临时墩桩均以入土深度和贯入度进行双控,以入土深度为主,以贯入度校核。打入时先采用DZ120锤打到稳定,再用APE400B或DZJ400打桩锤复打,80t履带式起重机在栈桥上配合施工。钢导梁为变截面工字形钢板梁,由2片主梁加桁式钢管连接系组成。底面线形与钢箱梁一致,长52m,重约153t,与钢箱梁用高强螺栓连接,导梁前端一节底面设置成斜坡口,以便钢导梁能顺利到达临时墩上。钢导梁在使用前必须进行探伤和等强度静载试验,以便检验竖向实际挠度与计算值的出入,测量出准确的挠度,确保架梁安全。钢导梁在工厂分单元制造并运输至工地,利用汽车式起重机分节拼装,为保证拼装过程中的抗倾覆稳定性,利用2×170t提升站吊到拼装平台后整体拼装。钢导梁前端设上墩结构,上墩后用千斤顶顶起,在滑块上滑移实现过墩。

3滑动装置

滑动装置由滑块(MGE高分子材料板)、滑道组成。MGE在工程实际应用中实测摩擦系数都在0.02~0.04(涂硅脂润滑),动、静摩擦系数相差约0.01。考虑到工程的复杂性,采用静摩擦系数0.05,动摩擦系数0.03。滑板表面设置油槽,解决滑板不吸油问题,滑块表面涂硅脂油以减小顶推摩阻力,滑道表面完整无缝、光洁、清洁非常重要,可避免划伤、污物侵入滑道、滑板磨损变形、褶皱等使摩擦系数增大。滑道由钢板制作,主体钢板厚度应在40mm以上,上面铺2~3mm厚不锈钢板,不锈钢板表面粗糙度<5μm,滑道板横向宽度为滑块宽度的1.2~1.5倍,滑道前、后端50cm范围各有一段斜面,与滑道夹角约20°,以便滑块喂进和吐出。滑道板的有效长度为5m,滑块在顶推过程中承受的最大压力<10MPa,以免造成滑块变形过大和损伤。滑道梁与分配梁间采用橡胶缓冲层,以适应梁底曲线的变化,调节箱梁底板不平以及滑道顶标高的控制误差。橡胶层作为垂直方向承受压力的缓冲变形层,既满足受压强度的要求,又有一定的变形,以适应主桥竖曲线和设计成桥线形的要求。橡胶层内的加劲钢板可保证滑道的整体性,起骨架作用。

4动力及控制系统

本工程采用18台ZLD100-200顶推千斤顶,ZTB25泵站。每台千斤顶配置8根钢绞线。设备储备能力及安全系数计算满足要求,顶推速度6~8m/h。受临时墩影响,施工要求不平衡水平力前进方向最大不超过墩顶支反力的5%,反向不超过3%。总牵引力按总顶推重的5%计算,设备按10%水平力选配。顶推过程中所需最大牵引力T=161800×5%=8090kN,动力储备系数为18台×1000/8090=2.22,钢绞线的安全系数为8根/台×260kN/根×18台/8090kN=6。连续顶推千斤顶装置包括2台千斤顶以及连接撑套、2套自动工具锚及2套行程检测装置。通过2台千斤顶串联,其中1台千斤顶顶推,另一台回程复位,当前一台顶推行程快要到位时,另一台进入工作状态,交替接力往复循环来实现钢箱梁不停地连续顶推作业。钢绞线一端拉在箱梁上的拉锚器上,拉锚器共17对,布置间距约40m,在纵隔板内侧802mm处,过墩时不用拆除。

5导向及纠偏装置

顶推过程中会由于各种原因造成箱梁的横向偏位,本桥主要采取导向限位措施和加横向力主动纠偏(见图3)。导向的限位点分设在箱梁的首、尾两端和主塔墩处。尾端在拼装平台处设置横向限位导向。前端临时墩限位导向利用滑道作纠偏导轨,结合钢箱梁横隔板设计,采用1道横隔板上、下游各布置纠偏轮,钢箱梁前90m(大于两临时墩间距)共28对,对滑道梁的约束用螺栓连接。在主塔内侧则用限位导轮,与主塔采用预埋件连接,实现主动纠偏。导向失败,偏差过大,必要时采用强制施加横向力进行纠偏。而纠偏受力点应尽量设在结构纵向长度的首、尾两端,为了保证梁按设计轴线滑动,具体措施如下:①可用10t手拉葫芦在前进墩拉导梁、在拼装平台拉箱梁拉锚器进行纠偏;②导轮上可按需贴楔铁纠偏;③利用千斤顶进行主动纠偏。所以导向及纠偏工作必不可少,在顶推行进状态中,以导向为主,必要时强制纠偏,限制钢梁的横向偏移始终在误差允许范围内。

6顶推同步控制技术

桃花峪黄河大桥箱梁顶推控制系统拟采用分布式计算机网络控制系统,由1个主控台(工控机+组态软件)、9个现场控制器、若干传感器、若干数据线及控制线组成。每个主桥墩、临时墩上各配置1个现场控制器,每个控制器可控制2套顶推连续千斤顶,现场控制器要求既能就地控制又能远程控制。主控台及现场控制器之间通过通信电缆连接。各现场控制器之间采用通信单元通信,所有检测及控制信号经过通信单元传送到主控计算机。主控计算机根据各种传感器采集到的位移信号、压力信号,按照一定的控制程序和算法,决定油缸的动作顺序,完成集群千斤顶的协调工作;同时,控制变频器频率的大小,驱动油缸以规定的速度伸缸或缩缸,从而实现千斤顶的同步控制。每个墩位配置1个现场控制器,每个现场控制器均带有触摸屏显示,可控制1个泵站和2套顶推设备,同时将所有的数据传送到主控台。操作面板上安装有急停开关、远程/就地选择开关、报警指示灯等。在远程控制状态下,现场控制箱只能进行停止操作;在就地控制状态下,现场控制箱可对本泵站上的任何1台或多台千斤顶进行自动、手动操作。

方案优化与创新

该桥方案中临时墩高54m,黄河粉砂河床冲刷大(达6~12m),施工期间风大,顶推距离长、梁重等施工要求,顶推设计采取了在常规钢箱梁顶推方法基础上进行创新,实现大吨位钢箱梁高柔性支墩长距离单向多点同步顶推技术,有效控制顶推过程中的不平衡水平力。

1临时墩顶不平衡水平力控制方案和措施

针对工程特点采取“顶推力控制为主、速度同步控制为辅、荷载追踪、均衡受控”的控制策略。以各墩墩顶总反力为控制依据,顶推千斤顶的顶推力和速度作为受控量,实现力与速度的双控。墩顶顶推方向不平衡水平力控制在5%以下,顶推反方向控制在3%以下,以此荷载控制临时墩结构的设计,比常规的5%~10%有很大提高。临时墩结构设计时采取上滑道后偏离临时墩中心20~25cm措施。

2顶推平台采用长、短结合滑道

顶推拼装平台前端采用临时墩方式,其上设置短滑道,其余部分在箱梁与平台间设置通长滑道,便于钢箱梁节段拼焊时节段的调整及滑动与起顶,顶推施工时仅在拼好的'箱梁后端设置起顶滑块,其他拼装用滑块撤除,拼好的箱梁节段组靠前端临时墩短滑道与后端设置起顶滑块共同滑出,后端设置起顶滑块在滑出一定距离后自动与箱梁脱开分离。如图4所示。

3临时墩顶设置预张拉水平索

为避免顶推时各墩受力不均造成墩身水平位移过大,可用墩顶水平钢绞线束进行抵抗。临时墩墩顶位移设计允许值纵桥向为:顶推前进方向120mm,反向为60mm。水平钢绞线束施工时分级加载,确保墩顶水平位移不超标。每墩设置4束,每束6根15.24mm钢绞线,共取24根钢绞线,在特殊情况下均可单独张拉收放调整。预张拉水平索布置情况如图2所示。

4设置拉线式位移变送器和限位急停装置

为确保使同一台连续千斤顶的前、后2个串联油缸协同一致,在连续千斤顶后设拉线式位移变送器,可有效测量左、右顶推的不同步位移,一旦位移接近限值,就利用微动开关进行检测及限位,对顶推系统进行预警。在预张拉水平索设限位急停装置,此限位急停装置采用变位器,可有效观测临时墩受力后的变位情况。变位器将顶推过程中的位移量转换成电信号直接传送至主控计算机上,超限后停车。

5移动提升站采用液压连续千斤顶自动控制提升技术

全桥钢箱梁(不含锚固段)共分53个节段,节段类型共A,B,C,D,E,F6种,C类和F类最重约319t,共44节。2×170t移动提升站跨度44m,高16m,由刚性支腿、柔性支腿和主梁3部分组成。支腿为钢管全焊结构,主梁由2片1542mm×2786mm箱梁组成。门式提升站走行在拼装平台和北锚梁支架上的轨道梁上。主梁上设2个吊点,总起重量为2×170t。每吊点上连续提升千斤顶安装16根17.8mm钢绞线及圈线器,控制系统由主控计算机、现场控制器、传感器、通信单元以及数据线等一整套设备及连接组成,采用集中管理、分散控制模式,能完成集群千斤顶的协调工作,实现千斤顶的同步控制。

6临时墩和南、北锚固段支架基础

北锚固段支架及北面覆盖层厚的河段,临时墩基础采用打入钢管桩方案;南面丁坝及覆盖层薄的河段,采用打入桩下接钻孔灌注桩方案,打入桩兼作钻孔桩的护筒,接头选在河床下一定深度,便于清除,满足河道行洪、航运及环保要求。南锚固段支架岸上基础在堤上山边采用挖孔扩大基础,路上采用摆放扩大基础加钢管柱方案,具有便于清除倒用、对河堤影响小、环保等特点。

结语

桃花峪黄河大桥根据箱梁结构构造,采用适宜的滑擦式,高临时墩顶推方式,总顶推长度685.75m,平均顶推速度为375m/d。通过控制顶推同步性、墩顶不平衡水平力和位移,强化导向作用和横向滑道顶面高差控制等技术措施,有效实现了大吨位钢箱梁、高支墩、长距离、单向、多点同步顶推,有效控制顶推过程中的不平衡水平力。

桥梁方案(篇3)

一、桥梁工程概况

本桥为新建大桥,桥长173.92米。

湘青大桥上部构造为5跨30m+1跨16m预应力空心板梁,下部为三柱式墩、U型桥台或埋置式桥台、钻孔桩基础。

本工程桥梁主要工程量为:Ф1.6m钻孔桩15根223.5延米。

Ф1.2m钻孔桩6根90延米。

16m预应力空心板梁11片。

30m预应力空心板梁70片。

二、桥梁工程施工方案

根据本工程的分布情况,成立三个桥梁队施工。

桥梁施工:桥梁一队从0#台施工起,再依次施工1#墩、2#墩,桥梁二队从6#台施工起,依次向5#墩、4#墩、3#墩施工,桥梁三队的主要工作是预制空心板梁及其它相关工作。桥梁一队配1台冲击钻机,桥梁二队配1台冲击钻机,后备一台1台冲击钻机。桥梁三队配备6套空心板梁预制模板。

桥梁立柱、盖梁、预制梁施工模板均采用定型钢模,湘青大桥预制厂设在原县委党校附近。待下部构造全部结束后才能架梁,预制梁架设采用双导梁架设。

三、施工方法及施工工艺

(一)钻孔灌注桩根据地质情况,本工程钻孔桩采用CZ30型冲击钻管锥分次成孔法钻进成孔,施工方法如下:

1.测量定位采用全站仪坐标法对钻孔桩桩位放样,埋好护筒后在护筒四周标记。

2.钻孔前准备

(1)平整场地,围堰筑岛旱地岛面高于地面10~20cm,水中筑岛岛面标高应高于施工水位1.0~1.5m,筑岛顶面面积应满足钻机和吊机行走需要。

(2)埋设护筒护筒用6~10mm钢板卷制,护筒直径较钻孔直径大20~25cm,长度视地质条件不同而异,一般采用开挖埋设法,开挖直径应比护筒外径大80~100cm,吊装就位后,对中检查,平面中心位移不大于50cm,保持垂直,用粘土沿四周对称分层填压夯实,护筒的埋深旱地不少于1m,护筒顶面应高于岛面0.2~0.5m,并高于施工水位或地下水位1.5~2.0m,水中墩、护筒底应进入河床底不少于0.5m。

(3)粘土选备:钻孔前贮备足够数量的粘土,以满足造浆需要,粘土以造浆能力强,粘度大为好。

(4)钻机就位钻机就位对钻孔质量和能否顺利钻进关系重大,就位时应保证管锥中心对准桩位中心,并将钻机支垫牢固。

3.钻进

(1)泥浆配制分次成孔工艺有自身造浆的功能,不需要在孔外先制备泥浆,可直接往孔内加粘土,通过管锥的冲压作用,自身造浆。施工中,每工班至少测定两次泥浆性能。

(2)开孔为保证钻孔能顺利进行,须对护筒底孔壁进行处理,开孔时,不要急于进尺,在护筒底1m范围内,多填粘土,用直径50cm实心钻头反复冲挤以加固护筒底孔壁,护筒底孔壁加固好后,即可进行小管锥钻进。

(3)小管锥钻进护筒底孔壁加固处理完成后,即用小管锥(锥径0.46m)钻进,管锥边钻进边出碴,钻进时可一次钻至孔底,也可分段成孔。

(4)扩孔:当小管锥完成小孔钻进后,用与钻孔直径相匹配的管锥,逐级更换管锥,进行扩孔,直至设计孔径,扩孔时应按小管锥的钻进方式一次到底或分段钻进。

(5)冲程选定孔壁稳定、钻进正常时,一般选用0.6~1.0m,易塌孔地层或有塌孔迹象时选用0.35~0.6m。

(6)保持水头高度由于分次成孔每次钻孔扩孔时都要将上次钻扩时护好的孔壁破坏,所以必须随时注意保护水头高度。水头高度应高于施工水位或地下水位1.5~1.8m,并不低于护筒上口10~20cm,掏碴时及时补水,通过透水性强的地层或有塌孔迹象时,可加大水头高度。

(7)粘土投入量在需要泥浆护壁的地层,钻进时应经常向孔内投放粘土,以保证泥浆的质量。砂土、卵石土层直径为0.75~1.25m的孔,每延长米成孔投入粘土0.5~1.0m3;直径为1.5~2.0m的孔,每延米成孔投入粘土1.0~1.2m3. 4.清孔成孔后,用管锥将钻碴基本掏净,然后按离子悬浮法进行清孔处理,即清孔前24h,按1(木屑):0.3(烧碱):1(水泥):30(粘土)适量水的比例配成膏状混合物,配制数量1m成孔体积,清孔时将膏状混合物,分三次抛入孔底,并用管锥冲砸5~10min,使膏状混合物均匀地溶于孔底泥浆中,用管锥掏渣,当捣至泥浆比重为1.03~1.06时,清孔终了。

5.吊装钢筋笼钢筋笼由钢筋班负责分段制作,用钻架或吊车安装,钢筋笼接长用2台电焊机焊接,逐段连接逐段下放。钢筋笼定位后,及时浇注混凝土,以防止坍孔。

6.灌注水下混凝土采用导管法进行水下混凝土的灌注,导管直径为250mm,壁厚8mm,一般节长2.0m,另外配置1节长4m,2节长1m的导管,以方便调节导管长度。导管接头处有胶圈密封防水,水下砼现场拌合,钻架起吊入仓。

灌注首批混凝土其数量须经过计算,使其有一定的冲击能量,把泥浆从导管中排出,并能把导管下口埋入砼,其深度不少于1m.当混凝土装满漏斗后,剪断隔水栓上的铁丝,混凝土即随隔水栓一起下入到孔底,排开泥浆。在整个浇注过程中,导管在混凝土中埋深2~6m,利用导管内混凝土的超压力使砼的浇注面逐渐上升,直至高于设计标高1m.冲击钻施工工艺流程图《钻孔桩施工工艺流程图》。

桥梁方案(篇4)

为认真贯彻交通运输部部长8月来调研指导工作重要讲话精神,认真贯彻落实交通运输局《关于开展公路隧道桥梁安全排查专项治理的紧急通知》的工作部署,经县局研究,决定在全县开展公路桥梁安全排查专项治理工作,现将有关事项安排如下

一、桥梁排查治理主要内容

1.桥梁下部结构检查:对基础掏空、冲蚀、埋深变化等情况进行详细检查,并结合墩台检查结果对桥梁下部结构安全性作出评价。

2.桥梁上部结构检查:主要排查桥跨结构受力裂缝的分布及变化,支座的变形、脱落,伸缩缝的破损、生效,桥面铺装的损坏,人行道、栏杆破损,排水系统堵塞等情况。

3.桥梁安全保护区检查:检查桥梁护岸、导流等设施完好情况,桥梁安全保护区内采砂,过桥管线、桥下垃圾堆积情况。

二、落实责任

县交通运输局负责开展全县乡道桥梁排查治理工作。

三、实施步骤

(一)第一阶段:全面自查阶段

时间:2018年9月25日—2018年10月31日

主要任务:制定管辖范围内桥梁排查治理专项行动方案,制定排查工作细则和计划,分解工作任务,健全工作机制,明确实施主体。

按照排查计划,开展地毯式隐患排查工作,做到不留死角,不放过任何细节,逐一登记排查情况,形成隐患清单,健全隐患数据库。

(二)第二阶段:重点治理阶段

时间:2018年11月1日—2018年12月31日

主要任务:根据隐患清单,分轻重缓急,有针对性地逐一制定具体治理方案,做到查出一处、治理一处;治理阶段要求遵循“一桥梁、一方案、一设计”的'理念,要彻底消除安全隐患。

(三)第三阶段:总结完善阶段

时间:2019年1月31日前

主要任务:系统总结专项行动工作情况,研究建立起来安全运行的长效机制。

四、工作要求

县局相关单位要强化安全“红线”意识和“底线”思维,按照“轻重缓急、分门别内”的原则,实行边排查、边治理、边完善。

(一)加强领导,健全机制。为切实加强对本次专项行动的组织领导,要完善工作机制和制度措施,明确职责分工和任务目标,周密部署,精心组织、责任到人,全力抓好专项行动实施。

(二)落实责任,明确分工。县局相关单位要按照职责分工部署本单位的桥梁排查治理工作。

(三)巩固成果,完善长效机制。要以本次桥梁隐患排查治理工作为契机,坚持边查边治边改,坚持短期整改与长效管理相结合。要严格按照有关法律法规和技术标准,结合专项治理行动成果,建立公路桥梁基础台账,推进公路桥梁安全运行管理的制度化、规范化、常态化,逐步完善管理措施和技术标准,进一步提升公路交通服务水平。

(四)加强信息报送。县局相关单位要健全信息统计报送工作,明确专人负责,及时掌握单位内桥梁隐患排查治理工作进展情况,做好管辖范围内公路桥梁隐患排查整治情况统计(附件1)和文字说明材料,并于每月30前分别报送县交通运输局安全股。

桥梁方案(篇5)

主桥下部结构采用栈桥和墩位平台方案,施工钻孔桩基础,反循环工艺成孔,北塔承台采用辅以井点和深井降水明挖施工,南塔承台采用整体锁口钢管桩围堰施工,塔柱采用6m液压自爬模浇筑施工,下横梁采用支架法施工,上横梁采用托架法施工,上部采用先梁后缆方案施工,主缆在梁面上采用猫道为操作平台,PPWS工法架设,索鞍利用塔顶吊架分2块吊装就位。主桥钢箱梁采用单向多点同步顶推法架设,现场在项目驻地以北设置钢梁节段组拼制造厂,钢箱梁在工厂加工成板单元,运抵现场加工成标准节段。北共用墩与北主墩间搭建钢箱梁顶推平台,在顶推平台上设置1处2×170t跨桥位移动提升站吊装箱梁节段和安装北锚梁。钢箱梁前端设置钢导梁,顶推过程中设置临时墩进行支撑,临时墩最大跨度82m,最高达55m。顶推由计算机控制自动连续顶推系统实现。南岸锚固段钢梁板单元由运梁车通过栈桥运输,采用支架法高位拼焊方案,由200t履带式起重机安装2个锚固段,其他单元板件控制在14t以内,用塔式起重机安装,在平台上安装组拼胎架和千斤顶微调系统,将锚梁拼焊成整体,整个支架拼焊及顶推、合龙统一纳入监控,进行线形控制。北岸锚固段钢梁在组拼场拼装成大块节段,由运梁车运输至北岸2×170t提升站处,由2×170t提升站将梁段提升至拼装平台上,将锚梁拼装成整体。如图2所示。

顶推设计

1、顶推拼装平台

顶推拼装平台是钢箱梁节段拼焊和线形控制的场地,是顶推施工的起点。拼装平台纵向长40m,横向宽44m,采用钢管桩加钢管连接系作为支撑体系,管桩顶采用型钢作为纵、横梁。平台四周采用1.2m(δ=12mm)管桩,中间采用0.8m(δ=10mm)管桩。管桩每根长72m,入土深度约27m,单桩承载力1750~3200kN。

2、临时墩及导梁

全桥共有6组临时墩,分布在北共用墩和南共用墩之间的河道和滩地上,标准间距为82m。每组标准临时墩通过分配梁和钢管组成变刚度结构,栈桥以下由24根1.0m管桩(δ=12mm)体系组成,按照3m×4m间距布置,栈桥以上由4根1.5m管桩(δ=16mm)组成。连接系采用桁式钢管,管桩顶采用型钢分配梁上布置滑道结构。单桩竖向承载力3000kN,入土深度35m,设计考虑调水调砂的冲刷12m影响。平台及临时墩桩均以入土深度和贯入度进行双控,以入土深度为主,以贯入度校核。打入时先采用DZ120锤打到稳定,再用APE400B或DZJ400打桩锤复打,80t履带式起重机在栈桥上配合施工。钢导梁为变截面工字形钢板梁,由2片主梁加桁式钢管连接系组成。底面线形与钢箱梁一致,长52m,重约153t,与钢箱梁用高强螺栓连接,导梁前端一节底面设置成斜坡口,以便钢导梁能顺利到达临时墩上。钢导梁在使用前必须进行探伤和等强度静载试验,以便检验竖向实际挠度与计算值的出入,测量出准确的挠度,确保架梁安全。钢导梁在工厂分单元制造并运输至工地,利用汽车式起重机分节拼装,为保证拼装过程中的抗倾覆稳定性,利用2×170t提升站吊到拼装平台后整体拼装。钢导梁前端设上墩结构,上墩后用千斤顶顶起,在滑块上滑移实现过墩。

3、滑动装置

滑动装置由滑块(MGE高分子材料板)、滑道组成。MGE在工程实际应用中实测摩擦系数都在0.02~0.04(涂硅脂润滑),动、静摩擦系数相差约0.01。考虑到工程的复杂性,采用静摩擦系数0.05,动摩擦系数0.03。滑板表面设置油槽,解决滑板不吸油问题,滑块表面涂硅脂油以减小顶推摩阻力,滑道表面完整无缝、光洁、清洁非常重要,可避免划伤、污物侵入滑道、滑板磨损变形、褶皱等使摩擦系数增大。滑道由钢板制作,主体钢板厚度应在40mm以上,上面铺2~3mm厚不锈钢板,不锈钢板表面粗糙度<5μm,滑道板横向宽度为滑块宽度的1.2~1.5倍,滑道前、后端50cm范围各有一段斜面,与滑道夹角约20°,以便滑块喂进和吐出。滑道板的有效长度为5m,滑块在顶推过程中承受的最大压力<10MPa,以免造成滑块变形过大和损伤。滑道梁与分配梁间采用橡胶缓冲层,以适应梁底曲线的变化,调节箱梁底板不平以及滑道顶标高的控制误差。橡胶层作为垂直方向承受压力的缓冲变形层,既满足受压强度的要求,又有一定的变形,以适应主桥竖曲线和设计成桥线形的要求。橡胶层内的加劲钢板可保证滑道的整体性,起骨架作用。

4、动力及控制系统

本工程采用18台ZLD100-200顶推千斤顶,ZTB25泵站。每台千斤顶配置8根钢绞线。设备储备能力及安全系数计算满足要求,顶推速度6~8m/h。受临时墩影响,施工要求不平衡水平力前进方向最大不超过墩顶支反力的5%,反向不超过3%。总牵引力按总顶推重的5%计算,设备按10%水平力选配。顶推过程中所需最大牵引力T=161800×5%=8090kN,动力储备系数为18台×1000/8090=2.22,钢绞线的安全系数为8根/台×260kN/根×18台/8090kN=6。连续顶推千斤顶装置包括2台千斤顶以及连接撑套、2套自动工具锚及2套行程检测装置。通过2台千斤顶串联,其中1台千斤顶顶推,另一台回程复位,当前一台顶推行程快要到位时,另一台进入工作状态,交替接力往复循环来实现钢箱梁不停地连续顶推作业。钢绞线一端拉在箱梁上的拉锚器上,拉锚器共17对,布置间距约40m,在纵隔板内侧802mm处,过墩时不用拆除。

5、导向及纠偏装置

顶推过程中会由于各种原因造成箱梁的横向偏位,本桥主要采取导向限位措施和加横向力主动纠偏(见图3)。导向的限位点分设在箱梁的首、尾两端和主塔墩处。尾端在拼装平台处设置横向限位导向。前端临时墩限位导向利用滑道作纠偏导轨,结合钢箱梁横隔板设计,采用1道横隔板上、下游各布置纠偏轮,钢箱梁前90m(大于两临时墩间距)共28对,对滑道梁的约束用螺栓连接。在主塔内侧则用限位导轮,与主塔采用预埋件连接,实现主动纠偏。导向失败,偏差过大,必要时采用强制施加横向力进行纠偏。而纠偏受力点应尽量设在结构纵向长度的首、尾两端,为了保证梁按设计轴线滑动,具体措施如下:①可用10t手拉葫芦在前进墩拉导梁、在拼装平台拉箱梁拉锚器进行纠偏;②导轮上可按需贴楔铁纠偏;③利用千斤顶进行主动纠偏。所以导向及纠偏工作必不可少,在顶推行进状态中,以导向为主,必要时强制纠偏,限制钢梁的横向偏移始终在误差允许范围内。

6、顶推同步控制技术

桃花峪黄河大桥箱梁顶推控制系统拟采用分布式计算机网络控制系统,由1个主控台(工控机+组态软件)、9个现场控制器、若干传感器、若干数据线及控制线组成。每个主桥墩、临时墩上各配置1个现场控制器,每个控制器可控制2套顶推连续千斤顶,现场控制器要求既能就地控制又能远程控制。主控台及现场控制器之间通过通信电缆连接。各现场控制器之间采用通信单元通信,所有检测及控制信号经过通信单元传送到主控计算机。主控计算机根据各种传感器采集到的位移信号、压力信号,按照一定的控制程序和算法,决定油缸的动作顺序,完成集群千斤顶的协调工作;同时,控制变频器频率的大小,驱动油缸以规定的速度伸缸或缩缸,从而实现千斤顶的同步控制。每个墩位配置1个现场控制器,每个现场控制器均带有触摸屏显示,可控制1个泵站和2套顶推设备,同时将所有的数据传送到主控台。操作面板上安装有急停开关、远程/就地选择开关、报警指示灯等。在远程控制状态下,现场控制箱只能进行停止操作;在就地控制状态下,现场控制箱可对本泵站上的任何1台或多台千斤顶进行自动、手动操作。

方案优化与创新

该桥方案中临时墩高54m,黄河粉砂河床冲刷大(达6~12m),施工期间风大,顶推距离长、梁重等施工要求,顶推设计采取了在常规钢箱梁顶推方法基础上进行创新,实现大吨位钢箱梁高柔性支墩长距离单向多点同步顶推技术,有效控制顶推过程中的不平衡水平力。

1、临时墩顶不平衡水平力控制方案和措施

针对工程特点采取“顶推力控制为主、速度同步控制为辅、荷载追踪、均衡受控”的控制策略。以各墩墩顶总反力为控制依据,顶推千斤顶的顶推力和速度作为受控量,实现力与速度的双控。墩顶顶推方向不平衡水平力控制在5%以下,顶推反方向控制在3%以下,以此荷载控制临时墩结构的设计,比常规的5%~10%有很大提高。临时墩结构设计时采取上滑道后偏离临时墩中心20~25cm措施。

2、顶推平台采用长、短结合滑道

顶推拼装平台前端采用临时墩方式,其上设置短滑道,其余部分在箱梁与平台间设置通长滑道,便于钢箱梁节段拼焊时节段的调整及滑动与起顶,顶推施工时仅在拼好的箱梁后端设置起顶滑块,其他拼装用滑块撤除,拼好的箱梁节段组靠前端临时墩短滑道与后端设置起顶滑块共同滑出,后端设置起顶滑块在滑出一定距离后自动与箱梁脱开分离。如图4所示。

3、临时墩顶设置预张拉水平索

为避免顶推时各墩受力不均造成墩身水平位移过大,可用墩顶水平钢绞线束进行抵抗。临时墩墩顶位移设计允许值纵桥向为:顶推前进方向120mm,反向为60mm。水平钢绞线束施工时分级加载,确保墩顶水平位移不超标。每墩设置4束,每束6根15.24mm钢绞线,共取24根钢绞线,在特殊情况下均可单独张拉收放调整。预张拉水平索布置情况如图2所示。

4、设置拉线式位移变送器和限位急停装置

为确保使同一台连续千斤顶的前、后2个串联油缸协同一致,在连续千斤顶后设拉线式位移变送器,可有效测量左、右顶推的不同步位移,一旦位移接近限值,就利用微动开关进行检测及限位,对顶推系统进行预警。在预张拉水平索设限位急停装置,此限位急停装置采用变位器,可有效观测临时墩受力后的变位情况。变位器将顶推过程中的位移量转换成电信号直接传送至主控计算机上,超限后停车。

5、移动提升站采用液压连续千斤顶自动控制提升技术

全桥钢箱梁(不含锚固段)共分53个节段,节段类型共A,B,C,D,E,F6种,C类和F类最重约319t,共44节。2×170t移动提升站跨度44m,高16m,由刚性支腿、柔性支腿和主梁3部分组成。支腿为钢管全焊结构,主梁由2片1542mm×2786mm箱梁组成。门式提升站走行在拼装平台和北锚梁支架上的轨道梁上。主梁上设2个吊点,总起重量为2×170t。每吊点上连续提升千斤顶安装16根17.8mm钢绞线及圈线器,控制系统由主控计算机、现场控制器、传感器、通信单元以及数据线等一整套设备及连接组成,采用集中管理、分散控制模式,能完成集群千斤顶的协调工作,实现千斤顶的同步控制。

6、临时墩和南、北锚固段支架基础

北锚固段支架及北面覆盖层厚的河段,临时墩基础采用打入钢管桩方案;南面丁坝及覆盖层薄的河段,采用打入桩下接钻孔灌注桩方案,打入桩兼作钻孔桩的护筒,接头选在河床下一定深度,便于清除,满足河道行洪、航运及环保要求。南锚固段支架岸上基础在堤上山边采用挖孔扩大基础,路上采用摆放扩大基础加钢管柱方案,具有便于清除倒用、对河堤影响小、环保等特点。

桥梁方案(篇6)

主桥下部结构采用栈桥和墩位平台方案,施工钻孔桩基础,反循环工艺成孔,北塔承台采用辅以井点和深井降水明挖施工,南塔承台采用整体锁口钢管桩围堰施工,塔柱采用6m液压自爬模浇筑施工,下横梁采用支架法施工,上横梁采用托架法施工,上部采用先梁后缆方案施工,主缆在梁面上采用猫道为操作平台,PPWS工法架设,索鞍利用塔顶吊架分2块吊装就位。主桥钢箱梁采用单向多点同步顶推法架设,现场在项目驻地以北设置钢梁节段组拼制造厂,钢箱梁在工厂加工成板单元,运抵现场加工成标准节段。北共用墩与北主墩间搭建钢箱梁顶推平台,在顶推平台上设置1处2×170t跨桥位移动提升站吊装箱梁节段和安装北锚梁。钢箱梁前端设置钢导梁,顶推过程中设置临时墩进行支撑,临时墩最大跨度82m,最高达55m。顶推由计算机控制自动连续顶推系统实现。南岸锚固段钢梁板单元由运梁车通过栈桥运输,采用支架法高位拼焊方案,由200t履带式起重机安装2个锚固段,其他单元板件控制在14t以内,用塔式起重机安装,在平台上安装组拼胎架和千斤顶微调系统,将锚梁拼焊成整体,整个支架拼焊及顶推、合龙统一纳入监控,进行线形控制。北岸锚固段钢梁在组拼场拼装成大块节段,由运梁车运输至北岸2×170t提升站处,由2×170t提升站将梁段提升至拼装平台上,将锚梁拼装成整体。如图2所示。

顶推设计

1、顶推拼装平台

顶推拼装平台是钢箱梁节段拼焊和线形控制的场地,是顶推施工的起点。拼装平台纵向长40m,横向宽44m,采用钢管桩加钢管连接系作为支撑体系,管桩顶采用型钢作为纵、横梁。平台四周采用1.2m(δ=12mm)管桩,中间采用0.8m(δ=10mm)管桩。管桩每根长72m,入土深度约27m,单桩承载力1750~3200kN。

2、临时墩及导梁

全桥共有6组临时墩,分布在北共用墩和南共用墩之间的河道和滩地上,标准间距为82m。每组标准临时墩通过分配梁和钢管组成变刚度结构,栈桥以下由24根1.0m管桩(δ=12mm)体系组成,按照3m×4m间距布置,栈桥以上由4根1.5m管桩(δ=16mm)组成。连接系采用桁式钢管,管桩顶采用型钢分配梁上布置滑道结构。单桩竖向承载力3000kN,入土深度35m,设计考虑调水调砂的冲刷12m影响。平台及临时墩桩均以入土深度和贯入度进行双控,以入土深度为主,以贯入度校核。打入时先采用DZ120锤打到稳定,再用APE400B或DZJ400打桩锤复打,80t履带式起重机在栈桥上配合施工。钢导梁为变截面工字形钢板梁,由2片主梁加桁式钢管连接系组成。底面线形与钢箱梁一致,长52m,重约153t,与钢箱梁用高强螺栓连接,导梁前端一节底面设置成斜坡口,以便钢导梁能顺利到达临时墩上。钢导梁在使用前必须进行探伤和等强度静载试验,以便检验竖向实际挠度与计算值的出入,测量出准确的挠度,确保架梁安全。钢导梁在工厂分单元制造并运输至工地,利用汽车式起重机分节拼装,为保证拼装过程中的抗倾覆稳定性,利用2×170t提升站吊到拼装平台后整体拼装。钢导梁前端设上墩结构,上墩后用千斤顶顶起,在滑块上滑移实现过墩。

3、滑动装置

滑动装置由滑块(MGE高分子材料板)、滑道组成。MGE在工程实际应用中实测摩擦系数都在0.02~0.04(涂硅脂润滑),动、静摩擦系数相差约0.01。考虑到工程的复杂性,采用静摩擦系数0.05,动摩擦系数0.03。滑板表面设置油槽,解决滑板不吸油问题,滑块表面涂硅脂油以减小顶推摩阻力,滑道表面完整无缝、光洁、清洁非常重要,可避免划伤、污物侵入滑道、滑板磨损变形、褶皱等使摩擦系数增大。滑道由钢板制作,主体钢板厚度应在40mm以上,上面铺2~3mm厚不锈钢板,不锈钢板表面粗糙度<5μm,滑道板横向宽度为滑块宽度的1.2~1.5倍,滑道前、后端50cm范围各有一段斜面,与滑道夹角约20°,以便滑块喂进和吐出。滑道板的有效长度为5m,滑块在顶推过程中承受的最大压力<10MPa,以免造成滑块变形过大和损伤。滑道梁与分配梁间采用橡胶缓冲层,以适应梁底曲线的变化,调节箱梁底板不平以及滑道顶标高的控制误差。橡胶层作为垂直方向承受压力的缓冲变形层,既满足受压强度的要求,又有一定的变形,以适应主桥竖曲线和设计成桥线形的要求。橡胶层内的加劲钢板可保证滑道的整体性,起骨架作用。

4、动力及控制系统

本工程采用18台ZLD100-200顶推千斤顶,ZTB25泵站。每台千斤顶配置8根钢绞线。设备储备能力及安全系数计算满足要求,顶推速度6~8m/h。受临时墩影响,施工要求不平衡水平力前进方向最大不超过墩顶支反力的5%,反向不超过3%。总牵引力按总顶推重的5%计算,设备按10%水平力选配。顶推过程中所需最大牵引力T=161800×5%=8090kN,动力储备系数为18台×1000/8090=2.22,钢绞线的安全系数为8根/台×260kN/根×18台/8090kN=6。连续顶推千斤顶装置包括2台千斤顶以及连接撑套、2套自动工具锚及2套行程检测装置。通过2台千斤顶串联,其中1台千斤顶顶推,另一台回程复位,当前一台顶推行程快要到位时,另一台进入工作状态,交替接力往复循环来实现钢箱梁不停地连续顶推作业。钢绞线一端拉在箱梁上的拉锚器上,拉锚器共17对,布置间距约40m,在纵隔板内侧802mm处,过墩时不用拆除。

5、导向及纠偏装置

顶推过程中会由于各种原因造成箱梁的横向偏位,本桥主要采取导向限位措施和加横向力主动纠偏(见图3)。导向的限位点分设在箱梁的首、尾两端和主塔墩处。尾端在拼装平台处设置横向限位导向。前端临时墩限位导向利用滑道作纠偏导轨,结合钢箱梁横隔板设计,采用1道横隔板上、下游各布置纠偏轮,钢箱梁前90m(大于两临时墩间距)共28对,对滑道梁的约束用螺栓连接。在主塔内侧则用限位导轮,与主塔采用预埋件连接,实现主动纠偏。导向失败,偏差过大,必要时采用强制施加横向力进行纠偏。而纠偏受力点应尽量设在结构纵向长度的首、尾两端,为了保证梁按设计轴线滑动,具体措施如下:①可用10t手拉葫芦在前进墩拉导梁、在拼装平台拉箱梁拉锚器进行纠偏;②导轮上可按需贴楔铁纠偏;③利用千斤顶进行主动纠偏。所以导向及纠偏工作必不可少,在顶推行进状态中,以导向为主,必要时强制纠偏,限制钢梁的横向偏移始终在误差允许范围内。

6、顶推同步控制技术

桃花峪黄河大桥箱梁顶推控制系统拟采用分布式计算机网络控制系统,由1个主控台(工控机+组态软件)、9个现场控制器、若干传感器、若干数据线及控制线组成。每个主桥墩、临时墩上各配置1个现场控制器,每个控制器可控制2套顶推连续千斤顶,现场控制器要求既能就地控制又能远程控制。主控台及现场控制器之间通过通信电缆连接。各现场控制器之间采用通信单元通信,所有检测及控制信号经过通信单元传送到主控计算机。主控计算机根据各种传感器采集到的位移信号、压力信号,按照一定的控制程序和算法,决定油缸的动作顺序,完成集群千斤顶的协调工作;同时,控制变频器频率的大小,驱动油缸以规定的速度伸缸或缩缸,从而实现千斤顶的同步控制。每个墩位配置1个现场控制器,每个现场控制器均带有触摸屏显示,可控制1个泵站和2套顶推设备,同时将所有的数据传送到主控台。操作面板上安装有急停开关、远程/就地选择开关、报警指示灯等。在远程控制状态下,现场控制箱只能进行停止操作;在就地控制状态下,现场控制箱可对本泵站上的任何1台或多台千斤顶进行自动、手动操作。

方案优化与创新

该桥方案中临时墩高54m,黄河粉砂河床冲刷大(达6~12m),施工期间风大,顶推距离长、梁重等施工要求,顶推设计采取了在常规钢箱梁顶推方法基础上进行创新,实现大吨位钢箱梁高柔性支墩长距离单向多点同步顶推技术,有效控制顶推过程中的不平衡水平力。

1、临时墩顶不平衡水平力控制方案和措施

针对工程特点采取“顶推力控制为主、速度同步控制为辅、荷载追踪、均衡受控”的控制策略。以各墩墩顶总反力为控制依据,顶推千斤顶的顶推力和速度作为受控量,实现力与速度的双控。墩顶顶推方向不平衡水平力控制在5%以下,顶推反方向控制在3%以下,以此荷载控制临时墩结构的设计,比常规的5%~10%有很大提高。临时墩结构设计时采取上滑道后偏离临时墩中心20~25cm措施。

2、顶推平台采用长、短结合滑道

顶推拼装平台前端采用临时墩方式,其上设置短滑道,其余部分在箱梁与平台间设置通长滑道,便于钢箱梁节段拼焊时节段的调整及滑动与起顶,顶推施工时仅在拼好的箱梁后端设置起顶滑块,其他拼装用滑块撤除,拼好的箱梁节段组靠前端临时墩短滑道与后端设置起顶滑块共同滑出,后端设置起顶滑块在滑出一定距离后自动与箱梁脱开分离。如图4所示。

3、临时墩顶设置预张拉水平索

为避免顶推时各墩受力不均造成墩身水平位移过大,可用墩顶水平钢绞线束进行抵抗。临时墩墩顶位移设计允许值纵桥向为:顶推前进方向120mm,反向为60mm。水平钢绞线束施工时分级加载,确保墩顶水平位移不超标。每墩设置4束,每束6根15.24mm钢绞线,共取24根钢绞线,在特殊情况下均可单独张拉收放调整。预张拉水平索布置情况如图2所示。

4、设置拉线式位移变送器和限位急停装置

为确保使同一台连续千斤顶的前、后2个串联油缸协同一致,在连续千斤顶后设拉线式位移变送器,可有效测量左、右顶推的不同步位移,一旦位移接近限值,就利用微动开关进行检测及限位,对顶推系统进行预警。在预张拉水平索设限位急停装置,此限位急停装置采用变位器,可有效观测临时墩受力后的变位情况。变位器将顶推过程中的位移量转换成电信号直接传送至主控计算机上,超限后停车。

5、移动提升站采用液压连续千斤顶自动控制提升技术

全桥钢箱梁(不含锚固段)共分53个节段,节段类型共A,B,C,D,E,F6种,C类和F类最重约319t,共44节。2×170t移动提升站跨度44m,高16m,由刚性支腿、柔性支腿和主梁3部分组成。支腿为钢管全焊结构,主梁由2片1542mm×2786mm箱梁组成。门式提升站走行在拼装平台和北锚梁支架上的轨道梁上。主梁上设2个吊点,总起重量为2×170t。每吊点上连续提升千斤顶安装16根17.8mm钢绞线及圈线器,控制系统由主控计算机、现场控制器、传感器、通信单元以及数据线等一整套设备及连接组成,采用集中管理、分散控制模式,能完成集群千斤顶的协调工作,实现千斤顶的同步控制。

6、临时墩和南、北锚固段支架基础

北锚固段支架及北面覆盖层厚的河段,临时墩基础采用打入钢管桩方案;南面丁坝及覆盖层薄的河段,采用打入桩下接钻孔灌注桩方案,打入桩兼作钻孔桩的护筒,接头选在河床下一定深度,便于清除,满足河道行洪、航运及环保要求。南锚固段支架岸上基础在堤上山边采用挖孔扩大基础,路上采用摆放扩大基础加钢管柱方案,具有便于清除倒用、对河堤影响小、环保等特点。

桥梁方案(篇7)

为进一步加强交通桥梁管理,确保在役交通桥梁度汛安全,根据市交通委、城阳区防汛抗旱指挥部、城阳区安监局具体要求,结合我区农村公路实际,特制定本工作方案:

一、工作任务

坚持“安全第一、预防第一、综合治理”的方针,对全区范围内的农村公路在役交通桥梁进行全面的安全隐患排查和治理,完成桥梁基本技术数据录入归档工作。

二、工作目标

坚持“边查、边改、边治和短期整改、长期整治”的工作原则,对全区农村公路在役交通桥梁进行彻底治理,坚决杜绝塌桥事件发生,确保全部桥梁安全度汛,道路畅通。

三、组织领导

区交通局成立农村公路桥梁安全隐患排查治理工作领导小组,由刘杰副局长任组长、镇村公路管理处吕松良同志任副组长、成员由镇村公路管理处人员和各街道公路站长组成。领导小组在镇村公路管理处下设办公室,由吕松良同志任办公室主任。

四、工作职责

按照“谁主管谁负责”的原则和要求进行职责分工。

工作职责:镇村公路管理处具体负责区级道路桥梁安全隐患排查治理工作、完成区级道路桥梁档案,并督查各街道村道桥梁安全隐患排查治理工作;各街道公路养护中心负责区级道路桥梁安全隐患排查及本辖域内村道桥梁安全隐患排查治理、桥梁档案工作。

转载请保留原文链接:http://www.j458.com/a/5800082.html,并在标注文章来源。
上一篇 : 平安夜的故事语录(热门20句)
下一篇 : 元宵节放花灯说说200句
" 桥梁方案 " 相关阅读